

Airplane Lift and Stall, Ground Effect, and Takeoff Speeds

Aircraft Performance presentation

Airplane Lift and Stall

Lift is proportional to AOA * (airspeed)²

Airplane Lift and Stall

Airplane Lift and Stall

Rolling Moment Due to Asymmetric Stall

Result: rolling moment to the right

Ground Effect Stall AOA reduced in ground effect ΔΑΟΑ Ground . Airplane on ground Airplane in free air: height > wingspan

AOA

Stall AOA reduced in ground effect

RESULT: No warning before stall in ground effect

Missed opportunity: Actual △AOA indicated by two previous roll events

Takeoff roll starts with airplane at rest

- Takeoff roll starts with airplane at rest
- Decision speed (V₁): With a failed engine, distance to climb to 35 feet same as distance to stop

 Rotation speed (V_R): pilot pulls column to raise the nose for takeoff

Liftoff speed (V_{LOF}): main gear leaves runway

- Takeoff safety speed (V₂): target climb speed with a failed engine, to be achieved by 35 feet above ground level (agl)
- V₃₅: actual speed at 35 feet agl
- Test objective: V₃₅ = V₂
- Test results: V₃₅ > V₂ (overshoot)

Takeoff Safety Speed (V₂)

- V₂ requirements intended to ensure
 - Safe AOA margin from stall
 - Safe control of asymmetric thrust with one engine inoperative
 - Safe minimum climb gradient with one engine inoperative

V₂ Development

V₂ Development

V₂ Development

Change in Flaps 10 Target Pitch Angle

Reduction in pitch without increase in speed exacerbated V₂ overshoots

V₂ and Takeoff Distance

- Takeoff distance increases with higher V₂
- Achieving target V₂ necessary to satisfy takeoff distance guarantee
- No analysis of physics of G650 rotation to validate speeds or determine root cause of overshoots

Takeoff Rotation Techniques

- Gulfstream attempted to solve V₂ overshoot problem through takeoff rotation technique
- Pitch attitude for climb at V₂ greater than target pitch for takeoff rotation
- V₃₅ reduced by reducing time to achieve climb pitch attitude
 - Achieve target pitch sooner (high rotation rate)
 - Increase pitch above target sooner

Takeoff Rotation Techniques: Achieve Target Pitch Sooner

- Abrupt column pull with high force
- V₂ overshoots reduced but not eliminated
- Primary flight test engineer concerned that technique too difficult to be accepted by FAA
- On accident flight, PIC stated technique "doesn't work"

Takeoff Rotation Techniques: Increase Pitch Above Target Sooner

- Less abrupt column pull with moderate force
- Reduced pauses at target pitch angle
- Increase in pitch to climb attitude became "almost...continuous"
- V₂ overshoots reduced but not eliminated
- Accident takeoff: AOA exceeded stall AOA in ground effect

Summary

- Erroneously low target V₂ speeds resulted in overshoots
- Reduction of pitch target without increase in target speeds exacerbated V₂ overshoots
- V₂ overshoots threatened takeoff distance guarantee
- Pitch angle and AOA increased sooner in successive takeoffs to reduce V₂ overshoots

Summary

- Accident takeoff: AOA exceeded stall AOA in ground effect
- Asymmetrical stall resulted in uncontrollable rolling moment
- Estimate of stall AOA in ground effect too high
 - No stick shaker before stall
 - Actual stall AOA could have been determined from previous events

National Transportation Safety Board